A dominant negative mutant of 2-5A-dependent RNase suppresses antiproliferative and antiviral effects of interferon.
نویسندگان
چکیده
2-5A-dependent RNase is the terminal factor in the interferon-regulated 2-5A system thought to function in both the molecular mechanism of interferon action and in the general control of RNA stability. However, direct evidence for specific functions of 2-5A-dependent RNase has been generally lacking. Therefore, we developed a strategy to block the 2-5A system using a truncated form of 2-5A-dependent RNase which retains 2-5A binding activity while lacking RNase activity. When the truncated RNase was stably expressed to high levels in murine cells, it prevented specific rRNA cleavage in response to 2-5A transfection and the cells were unresponsive to the antiviral activity of interferon alpha/beta for encephalomyocarditis virus. Remarkably, cells expressing the truncated RNase were also resistant to the antiproliferative activity of interferon. The truncated RNase is a dominant negative mutant that binds 2-5A and that may interfere with normal protein-protein interactions through nine ankyrin-like repeats.
منابع مشابه
A Study of the Interferon Antiviral Mechanism: Apoptosis Activation by the 2–5A System
The 2-5A system contributes to the antiviral effect of interferons through the synthesis of 2-5A and its activation of the ribonuclease, RNase L. RNase L degrades viral and cellular RNA after activation by unique, 2'-5' phosphodiester-linked, oligoadenylates [2-5A, (pp)p5' A2'(P5'A2')]n, n >=2. Because both the 2-5A system and apoptosis can serve as viral defense mechanisms and RNA degradation ...
متن کاملInterferon action and apoptosis are defective in mice devoid of 2',5'-oligoadenylate-dependent RNase L.
2',5'-Oligoadenylate-dependent RNase L functions in the interferon-inducible, RNA decay pathway known as the 2-5A system. To determine the physiological roles of the 2-5A system, mice were generated with a targeted disruption of the RNase L gene. The antiviral effect of interferon alpha was impaired in RNase L-/- mice providing the first evidence that the 2-5A system functions as an antiviral p...
متن کاملRNase L mediates the antiviral effect of interferon through a selective reduction in viral RNA during encephalomyocarditis virus infection.
The 2',5'-oligoadenylate (2-5A) system is an RNA degradation pathway which plays an important role in the antipicornavirus effects of interferon (IFN). RNase L, the terminal component of the 2-5A system, is thought to mediate this antiviral activity through the degradation of viral RNA; however, the capacity of RNase L to selectively target viral RNA has not been carefully examined in intact ce...
متن کاملBiochemical evidence for a novel low molecular weight 2-5A-dependent RNase L in chronic fatigue syndrome.
Previous studies from this laboratory have demonstrated a statistically significant dysregulation in several key components of the 2',5'-oligoadenylate (2-5A) synthetase/RNase L and PKR antiviral pathways in chronic fatigue syndrome (CFS) (Suhadolnik et al. Clin Infect Dis 18, S96-104, 1994; Suhadolnik et al. In Vivo 8, 599-604, 1994). Two methodologies have been developed to further examine th...
متن کاملRNase L contributes to experimentally induced type 1 diabetes onset in mice.
The cause of type 1 diabetes continues to be a focus of investigation. Studies have revealed that interferon α (IFNα) in pancreatic islets after viral infection or treatment with double-stranded RNA (dsRNA), a mimic of viral infection, is associated with the onset of type 1 diabetes. However, how IFNα contributes to the onset of type 1 diabetes is obscure. In this study, we found that 2-5A-depe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 12 8 شماره
صفحات -
تاریخ انتشار 1993